
1. Create a project repository on GitHub 
(https://www.github.com).
Ideally, use a repository template to start.

{owner}/project_name

We use GitHub ”repositories” to collaborate on empirical 
research projects.

- Code: Find the source code written for your project (e.g., data 
preparation, analysis)

- Issues: Keep a to-do list and assign items to team members
- Projects: Prioritize issues, define deadlines and organize your 

team meetings.

2b) Working on a (privately shared) project
The repository owner adds team members as 
collaborators (settings → manage access → add 
people)

2a) Working on an open-source project
Team members fork (=copy) the repository to 
their own GitHub account. The fork can be 
synchronized with its origin.

git clone [owner url]

git clone github.com/
owner/{project_name}

5) Review Pull Request and Close 
Issue
Team members make pull requests 
to ask for code changes to be 
integrated in the main project. 

To review and accept these requests, 
go to the Pull Requests tab, and 
review submitted requests. Finally, 
merge them into your original project, 
and close the corresponding issue. 

{owner}/project_name

hannes/project_name

alex/project_name

1. Git Bash 2. RStudio

• git status
• git add {file name 

that was changed}
• git commit –m 

[message of what 
you did, in 
quotation marks]

• git push 
(if first time: 
git push –u origin 
{branch name}

• In the top right, click on 
“Git”

• Select files with changes 
you want to commit and 
click on “commit”

• Enter a brief commit 
message and click 
“commit”

• Finally, click on “push” to 
push your changesWhenever working on a project, we 

follow the Git workflow.

• git branch {name} → Creates new branch
(Alternatively, click on “Create a branch for this 
issue” in the respective issue on GitHub.com)

• git checkout {name} → Switches to this 
branch
(Alternatively, follow the instructions provided on 
GitHub.com after creating the branch)

• Use git pull {name} to get latest changes 
from this branch

The git push command uploads the content of 
your local repository to a remote repository on 
GitHub. Your team members will likely not see these 
changes yet (e.g., because they don’t monitor the
branch, or because the changes are in a fork).

2. Choose to work privately (e.g., for 
confidential projects), or publicly 
(e.g., for open-source projects other 
can contribute to)

3b) Team members check out the 
owner’s repository to their computers.
Go to a directory where you want the project 
to reside → open terminal --> run 
commands below (use the original 
repository’s username).

3a) Team members clone (= download) 
forks to their computers. 
Go to a directory where you want the project 
to reside → open terminal → run commands 
below (use your own username to refer to 
the fork).

2. Create a branch
Create a branch with a specific name for the issue you 
will be working on. This helps others to review your code 
and avoids conflicts when pulling and pushing changes. 
Do this always – even if you work in a privately shared 
project.

3. Start working on the issue
Make the necessary changes in the source code of the files in the locally cloned 
repository. Working on an issue usually entails multiple commits, which can be done 
through Git Bash or editors such as Rstudio or Visual Studio Code.

1. Find an issue to work on (i.e., 
select one from the issues or 
project page)

- If forked (2a above) - check if 
fork is up-to-date using sync fork 
on GitHub.com, and git pull to 
retrieve the latest changes locally.

git clone [your url]

git clone github.com/
alex/{project_name}

4. Update the Git “Issue” by letting others know what you 
changed, inform about what still needs to be done, or 
request feedback. Tips on how to write good issues can be 
found at Tilburg Science Hub: 
tilburgsciencehub.com/write/issues.

5) Make a pull request
Happy with the changes, and ready to ask team members to 
integrate these changes with the main branch of your 
(original) repository? Make a pull request. See 
tilburgsciencehub.com/contribute/pullrequests to find out 
how.

Your team members now can review and integrate your
changes.

4. Follow

(see below)
the Git 
Workflow


	Slide 1

